Martes, Agosto 30, 2011

SPACE ELEVATOR


A space elevator for Earth would consist of a cable anchored to the Earth's equator, reaching into space. By attaching a counterweight at the end (or by further extending the cable upward for the same purpose), the center of mass is kept above the level of geostationary orbit. Inertia ensures that the cable remains stretched taut, countering the gravitational pull downward. Once above the geostationary level, climbers would have weight in the upward direction as the centrifugal force overpowers gravity. (The diagram is to scale. The height of the counterweight varies by design and a typical, workable height is shown.)

A space elevator is a proposed non-rocket spacelaunch structure (a structure designed to transport material from a celestial body's surface into space). Many elevator variants have been suggested, all of which involve travelling along a fixed structure instead of using rocket-powered space launch, most often a cable that reaches from the surface of the Earth on or near the equator to geostationary orbit (GSO) and a counterweight outside of the geostationary orbit.

Discussion of a space elevator dates back to 1895 when Konstantin Tsiolkovsky proposed a free-standing "Tsiolkovsky" tower reaching from the surface of Earth to geostationary orbit 35,785 km (22,236 miles) up. Like all buildings, Tsiolkovsky's structure would be under compression, supporting its weight from below. Since 1959, most ideas for space elevators have focused on purely tensile structures, with the weight of the system held up from above. In the tensile concepts, a space tether reaches from a large mass (the counterweight) beyond geostationary orbit to the ground. This structure is held in tension between Earth and the counterweight like a guitar string held taut. Space elevators have also sometimes been referred to as beanstalks, space bridges, space lifts, space ladders, skyhooks, orbital towers, or orbital elevators.

While some variants of the space elevator concept are technologically feasible, current technology is not capable of manufacturing tether materials that are sufficiently strong and light to build an Earth-based space elevator of the geostationary orbital tether type. Recent concepts for a space elevator are notable for their plans to use carbon nanotube or boron nitride nanotube based materials as the tensile element in the tether design, since the measured strength of carbon nanotubes appears great enough to make this possible. Technology as of 1978 could produce elevators for locations in the solar system with weaker gravitational fields, such as the Moon or Mars.

For human riders on an Earth-based elevator, adequate protection against radiation would likely need to be provided, depending on the transit time through the Van Allen belts. At the transit times expected for early systems, radiation due to the Van Allen belts would, if unshielded, give a dose well above permitted levels.

History
Konstantin Tsiolkovsky


Early concepts
The key concept of the space elevator appeared in 1895 when Russian scientist Konstantin Tsiolkovsky was inspired by the Eiffel Tower in Paris to consider a tower that reached all the way into space, built from the ground up to an altitude of 35,790 kilometers (22,238 mi) above sea level (geostationary orbit). He noted that a "celestial castle" at the top of such a spindle-shaped cable would have the "castle" orbiting Earth in a geostationary orbit (i.e. the castle would remain over the same spot on Earth's surface).
Since the elevator would attain orbital velocity as it rode up the cable, an object released at the tower's top would also have the orbital velocity necessary to remain in geostationary orbit. Unlike more recent concepts for space elevators, Tsiolkovsky's (conceptual) tower was a compression structure, rather than a tension (or "tether") structure.
Twentieth century
Building a compression structure from the ground up proved an unrealistic task as there was no material in existence with enough compressive strength to support its own weight under such conditions.In 1959 another Russian scientist, Yuri N. Artsutanov, suggested a more feasible proposal. Artsutanov suggested using a geostationary satellite as the base from which to deploy the structure downward. By using a counterweight, a cable would be lowered from geostationary orbit to the surface of Earth, while the counterweight was extended from the satellite away from Earth, keeping the center of mass of the cable motionless relative to Earth. Artsutanov's idea was introduced to the Russian-speaking public in an interview published in the Sunday supplement of Komsomolskaya Pravda in 1960,but was not available in English until much later. He also proposed tapering the cable thickness so that the stress in the cable was constant—this gives a thin cable at ground level, thickening up towards GSO.
Both the tower and cable ideas were proposed in the quasi-humorous Ariadne column in New Scientist, 24 December 1964.
Making a cable over 35,000 kilometers (22,000 miles) long is a difficult task. In 1966, Isaacs, Vine, Bradner and Bachus, four American engineers, reinvented the concept, naming it a "Sky-Hook," and published their analysis in the journal Science. They decided to determine what type of material would be required to build a space elevator, assuming it would be a straight cable with no variations in its cross section, and found that the strength required would be twice that of any existing material including graphite, quartz, and diamond.
21st century
After the development of carbon nanotubes in the 1990s, engineer David Smitherman of NASA/Marshall's Advanced Projects Office realized that the high strength of these materials might make the concept of an orbital skyhook feasible, and put together a workshop at the Marshall Space Flight Center, inviting many scientists and engineers to discuss concepts and compile plans for an elevator to turn the concept into a reality. The publication he edited, compiling information from the workshop, "Space Elevators: An Advanced Earth-Space Infrastructure for the New Millennium", provides an introduction to the state of the technology at the time, and summarizes the findings.
Another American scientist, Bradley C. Edwards, suggested creating a 100,000 km (62,000 mi) long paper-thin ribbon using a carbon nanotube composite material. He chose a ribbon type structure rather than a cable because that structure might stand a greater chance of surviving impacts by meteoroids. Supported by the NASA Institute for Advanced Concepts, Edwards' work was expanded to cover the deployment scenario, climber design, power delivery system, orbital debris avoidance, anchor system, surviving atomic oxygen, avoiding lightning and hurricanes by locating the anchor in the western equatorial Pacific, construction costs, construction schedule, and environmental hazards.The largest holdup to Edwards' proposed design is the technological limit of the tether material. His calculations call for a fiber composed of epoxy-bonded carbon nanotubes with a minimal tensile strength of 130 GPa (19 million psi) (including a safety factor of 2); however, tests in 2000 of individual single-walled carbon nanotubes (SWCNTs), which should be notably stronger than an epoxy-bonded rope, indicated the strongest measured as 52 GPa (7.5 million psi).Multi-walled carbon nanotubes have been measured with tensile strengths up to 63 GPa (9 million psi).
Structure
One concept for the space elevator has it tethered to a mobile seagoing platform.
The centrifugal force of earth's rotation is the main principle behind a space elevator. As the earth rotates, the centrifugal force holds the tether upwards against gravity. There are a variety of space elevator designs. Almost every design includes a base station, a cable, climbers, and a counterweight.
Base station
The base station designs typically fall into two categories—mobile and stationary. Mobile stations are typically large oceangoing vessels. Stationary platforms would generally be located in high-altitude locations, such as on top of mountains, or even potentially on high towers.
Mobile platforms have the advantage of being able to maneuver to avoid high winds, storms, and space debris. While stationary platforms don't have these advantages, they typically would have access to cheaper and more reliable power sources, and require a shorter cable. While the decrease in cable length may seem minimal (no more than a few kilometers), the cable thickness could be reduced over its entire length, significantly reducing the total weight.
Cable
Carbon nanotubes are one of the candidates for a cable material
A space elevator cable must carry its own weight as well as the (smaller) weight of climbers. The required strength of the cable will vary along its length, since at various points it has to carry the weight of the cable below, or provide a centripetal force to retain the cable and counterweight above. In a 1998 report, NASA researchers noted that "maximum stress [on a space elevator cable] is at geosynchronous altitude so the cable must be thickest there and taper exponentially as it approaches Earth. Any potential material may be characterized by the taper factor – the ratio between the cable's radius at geosynchronous altitude and at the Earth's surface."
The cable must be made of a material with a large tensile strength/mass ratio. For example, the Edwards space elevator design assumes a cable material with a specific strength of at least 100,000 kN/(kg/m). This value takes into consideration the entire weight of the space elevator. A space elevator would need a material capable of sustaining a length of 4,960 kilometers (3082 mi) of its own weight at sea level to reach a geostationary altitude of 36,000 km (22,300 mi) without tapering and without breaking.Therefore, a material with very high strength and lightness is needed.

For comparison, metals like titanium, steel or aluminium alloys have breaking lengths of only 20–30 km. Modern fibre materials (which tend to achieve greater strength because the microscopic or crystal structure is aligned with the axis of the material and has fewer defects) such as kevlar, fibreglass and carbon/graphite fibre have breaking lengths of 100–400 km. Quartz fibers have an advantage that they can be drawn to a length of hundreds of kilometers even with the present-day technology. Nanoengineered materials such as carbon nanotubes and, more recently discovered, graphene ribbons (perfect two-dimensional sheets of carbon) are expected to have breaking lengths of 5000–6000 km at sea level, and also are able to conduct electrical power.
Carbon is such a good candidate material (for high specific strength) because, as only the 6th element in the periodic table, it has very few of the nucleons which contribute most of the dead weight of any material (whereas most of the interatomic bonding forces are contributed by only the outer few electrons); the challenge now remains to extend to macroscopic sizes the production of such material that are still perfect on the microscopic scale (as microscopic defects are most responsible for material weakness). The current (2009) carbon nanotube technology allows growing tubes up to a few tens of centimeters only.
A seagoing anchor station would incidentally act as a deep-water seaport.
Climbers
A conceptual drawing of a space elevator climbing through the clouds.
A space elevator cannot be an elevator in the typical sense (with moving cables) due to the need for the cable to be significantly wider at the center than the tips. While various designs employing moving cables have been proposed, most cable designs call for the "elevator" to climb up a stationary cable.
Climbers cover a wide range of designs. On elevator designs whose cables are planar ribbons, most propose to use pairs of rollers to hold the cable with friction.
Climbers must be paced at optimal timings so as to minimize cable stress and oscillations and to maximize throughput. Lighter climbers can be sent up more often, with several going up at the same time. This increases throughput somewhat, but lowers the mass of each individual payload.[citation needed
As the car climbs, the elevator takes on a 1 degree lean, due to the top of the elevator traveling faster than the bottom around the Earth (Coriolis force). This diagram is not to scale.
The horizontal speed of each part of the cable increases with altitude, proportional to distance from the center of the Earth, reaching orbital velocity at geostationary orbit. Therefore as a payload is lifted up a space elevator, it needs to gain not only altitude but angular momentum (horizontal speed) as well. This angular momentum is taken from the Earth's own rotation. As the climber ascends it is initially moving slightly more slowly than the cable that it moves onto (Coriolis force) and thus the climber "drags" on the cable.

VIDEOS FOR SPACE ELEVATOR:


                                         


POINT OF VIEW:
Although space elevator impossible to make because its dangerous to travel to outer space and we cannot assure that space elevator is safe.



SOURCE:
http://en.wikipedia.org/wiki/Space_elevator
http://www.spaceelevator.com/
http://www.howstuffworks.com/space-elevator.htm
http://articles.cnn.com/2009-11-05/tech/space.elevator_1_space-elevator-space-station-david-smitherman?_s=PM:TECH


SPACE ELEVATOR by SARAH JEAN ICOY









10 komento:

  1. Space elevator is nice but isn't it safe ??

    but u have a nice topic
    :)

    TumugonBurahin
  2. Wow, Really amazing... Fantastic... nice topic girl :))

    TumugonBurahin
  3. its amazing but the space elevator is for me is dangerous and it is not safe....

    TumugonBurahin
  4. i think space elevator is not safe.. but its ok. by the use of this elevator we can go to outer space..:)

    TumugonBurahin
  5. wow!! amazing..if there is elevator in mall there is also elevator in space...wow!! i want to ride it......and have a journey there.

    TumugonBurahin
  6. nice...good report.its executed properly..

    TumugonBurahin
  7. Space elevator ! WoW ! I luv it also ! Great job

    TumugonBurahin
  8. Space elevator?....unbelievable....

    TumugonBurahin